Efficient Minimum Error Rate Training and Minimum Bayes-Risk Decoding for Translation Hypergraphs and Lattices

نویسندگان

  • Shankar Kumar
  • Wolfgang Macherey
  • Chris Dyer
  • Franz Josef Och
چکیده

Minimum Error Rate Training (MERT) and Minimum Bayes-Risk (MBR) decoding are used in most current state-of-theart Statistical Machine Translation (SMT) systems. The algorithms were originally developed to work with N -best lists of translations, and recently extended to lattices that encode many more hypotheses than typical N -best lists. We here extend lattice-based MERT and MBR algorithms to work with hypergraphs that encode a vast number of translations produced by MT systems based on Synchronous Context Free Grammars. These algorithms are more efficient than the lattice-based versions presented earlier. We show how MERT can be employed to optimize parameters for MBR decoding. Our experiments show speedups from MERT and MBR as well as performance improvements fromMBR decoding on several language pairs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Path Counting Transducers for Minimum Bayes-Risk Decoding of Statistical Machine Translation Lattices

This paper presents an efficient implementation of linearised lattice minimum Bayes-risk decoding using weighted finite state transducers. We introduce transducers to efficiently count lattice paths containing n-grams and use these to gather the required statistics. We show that these procedures can be implemented exactly through simple transformations of word sequences to sequences of n-grams....

متن کامل

Lattice Minimum Bayes-Risk Decoding for Statistical Machine Translation

We present Minimum Bayes-Risk (MBR) decoding over translation lattices that compactly encode a huge number of translation hypotheses. We describe conditions on the loss function that will enable efficient implementation of MBR decoders on lattices. We introduce an approximation to the BLEU score (Papineni et al., 2001) that satisfies these conditions. The MBR decoding under this approximate BLE...

متن کامل

Risk based lattice cutting for segmental minimum Bayes-risk decoding

Minimum Bayes Risk (MBR) decoders improve upon MAP decoders by directly optimizing loss function of interest: Word Error Rate MBR decoding is expensive when the search spaces are large Segmental MBR (SMBR) decoding breaks the single utterance-level MBR decoder into a sequence of simpler search problems. – To do this, the N-best lists or lattices need to be segmented We present: A new lattice se...

متن کامل

Fluency Constraints for Minimum Bayes-Risk Decoding of Statistical Machine Translation Lattices

A novel and robust approach to improving statistical machine translation fluency is developed within a minimum Bayesrisk decoding framework. By segmenting translation lattices according to confidence measures over the maximum likelihood translation hypothesis we are able to focus on regions with potential translation errors. Hypothesis space constraints based on monolingual coverage are applied...

متن کامل

Neural Machine Translation by Minimising the Bayes-risk with Respect to Syntactic Translation Lattices

We present a novel scheme to combine neural machine translation (NMT) with traditional statistical machine translation (SMT). Our approach borrows ideas from linearised lattice minimum Bayes-risk decoding for SMT. The NMT score is combined with the Bayes-risk of the translation according the SMT lattice. This makes our approach much more flexible than n-best list or lattice rescoring as the neu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009